Archive for October, 2011

How long is a password string?

2011-10-18 by grahamlee. 1 comments

Password policy questions are a perennial fixture of IT Security stack exchange, and take many forms.

Take, for example, the recent XKCD comic on the subject:

Shortly after it was posted, user Billy ONeal asked directly whether the logic was sound: Is a short complex password or a long dictionary passphrase better? You will find answers that support either conclusion, as well as answers that put the trade-offs involved into context.

Of course, part of knowing how easy a password is to crack is knowing how a password cracker works. Are there state of the art techniques or theory specifically for attacking pass phrases? Are there lists of the most common words or ngrams used in passwords and pass phrases?

So we’ve got no consistent idea about what constitutes a “good” password, although we can probably guess at what weak passwords will fall first. But then who is responsible for deciding a user’s password strength? Pretend for a moment that we agree what a strong password is. Should we stop users from choosing “weak” passwords, or is it their own fault for not understanding information theory and the entropy content of their chosen string of characters?

The definitive answer is “it depends”. It depends on how valuable the assets being protected by password access are. It depends on whether the value is appreciated by you as service provider/systems administrator, or by the user as customer/asset owner (or by a combination of those roles, or by someone else). It depends on how much inconvenience you’re willing to put your users to, and on how much inconvenience your users are willing to accept.

So, you’ve decided that you do want to enforce a policy. How does that work? Some websites enforce a maximum password length, is that a good idea?. Should passwords be truly random?

To summarise the discussion this far: there are different ideas of what makes a good password, of who is responsible for deciding whether a password is good or bad, and of how to enforce good passwords once you do decide you want to. But all of this discussion has already put the cart before the horse. Are your passwords going to be brute-force, or will the attacker use a key logger? Maybe they’ll attack the password where it’s stored?.

Indeed, while we’re asking the big questions, why passwords at all? Might biometric identification be better? Why not just forget all of this complication over strong passwords and start taking fingerprints instead? Some reasons include the possibility of false positives from the biometrics system (who hasn’t tried holding up a photograph to a facial recognition system?), and the icky disgustingness of some other attacks.

Suffice it to say that the problem of password security is a complex one, but one that the denizens of security.stackexchange.com enjoy tackling.

QotW #12: How to counter the statement: “You don’t need (strong) security if you’re not doing anything illegal”?

2011-10-10 by roryalsop. 0 comments

Ian C posted this interesting question, which does come up regularly in conversation with people who don’t deal with security on a daily basis, and seems to be highlighted in the media for (probably) political reasons. The argument is “surely as long as you aren’t breaking the law, you shouldn’t need to prevent us having access – just to check, you understand”

This can be a very emotive subject, and it is one that has been used and abused by various incumbent authorities to impose intrusions on the liberty of citizens, but how can we argue the case against it in a way the average citizen can understand?

Here are some viewpoints already noted – what is your take on this topic?

M’vy made this point from the perspective of a business owner:

Security is not about doing something illegal, it’s about someone else doing something illegal (that will impact you).

If you don’t encrypt your phone calls, someone could know about what all your salesman are doing and can try to steal your clients. If you don’t shred your documents, someone could use all this information to mount a social engineering attack against your firm, to steal R&D data, prototype, designs…

Graham Lee supported this with a simple example:

 Commercial confidential data…could provide competitors with an advantage in the marketplace if the confidentiality is compromised. If that’s still too abstract, then consider the personal impact of being fired for being the person who leaked the trade secrets.

So we can easily see a need for security in a commercial scenario, but why should a non-technical individual worry? From a more personal perspective, Robert David Graham pointed this out

 As the Miranda Rights say: “anything you say can and will be used against you in a court of law”. Right after the police finish giving you the Miranda rights, they then say “but if you are innocent, why don’t you talk to us?”. This leads to many people getting convicted of crimes because it is indeed used against them in a court of law. This is a great video on YouTube that explains in detail why you should never talk to cops, especially if you are innocent: http://www.youtube.com/watch?v=6wXkI4t7nuc

Tate Hansen‘s thought is to ask,

“Do you have anything valuable that you don’t want someone else to have?”

If the answer is Yes then follow up with “Are you doing anything to protect it?”

From there you can suggest ways to protect what is valuable (do threat modeling, attack modeling, etc.).

But the most popular answer by far was from Justice:

You buy a lock and lock your front door if you live in a city, in close proximity to hundreds of thousands of others. There is a reason for that. And it’s the same reason why you lock your Internet front door.

Iszi asked a very closely linked question “Why does one need a high level of privacy/anonymity for legal activities”, which also inspired a range of answers:

From Andrew Russell, these 4 thoughts go a long way to explaining the need for security and privacy:

If we don’t encrypt communication and lock systems then it would be like:

Sending letters with transparent envelopes. Living with transparent clothes, buildings and cars. Having a webcam for your bed and in your bathroom. Leaving unlocked cars, homes and bikes.

And finally, from the EFF’s privacy page:

Privacy rights are enshrined in our Constitution for a reason — a thriving democracy requires respect for individuals’ autonomy as well as anonymous speech and association. These rights must be balanced against legitimate concerns like law enforcement, but checks must be put in place to prevent abuse of government powers.

A lot of food for thought…

Risk Assessments: Knowing What to Protect

2011-10-04 by Jeff Ferland. 0 comments

A company’s data is as much a risk as it is an asset. The way that customer data is stored in modern times requires it to be protected as a vulnerable asset and regarded as an unrealized liability even if not considered on the annual financial statement. In many jurisdictions this is enforced by legislation (eg Data Protection Act of 1998 in the UK)

One of the challenges of this as a modern concern lies in knowing where your data is.

To make a comparable example, consider a company that owns its place of operation. That asset must be protected with an investment both for sound business sense and by regulatory requirement. Fire protection, insurance, and ongoing maintenance are assumed costs that are considered all but mandatory. A company that isn’t covering those costs is probably not standing on all its legs. The loss of a primary building because of inadequate investment in protection and maintenance could be anywhere from a major event to fatal to the company.

It may seem a surreal comparison, but data exposure can have an impact as substantial as losing a primary building. A bank without customer records is dead regardless of the cash on hand. A bank with all its customer records made public is at risk of the same fate. Illegitimate transactions, damage to reputation, liability for customer losses related to disclosure and regulatory reaction may all work together to end an institution.

Consider how earlier this year Sony’s Playstation online gaming network was hacked. In the face of this compromise Sony estimated their present losses at $171 million, suffered extended periods of service downtime, and suffered further breaches in attempting to restore service. Further losses are likely as countries around the world investigate the situation and consider fines. Private civil suits have also been brought in response to the breaches. To put the numbers in perspective, the division responsible for the Playstation network posted a 2010 loss of approximately $1 billion dollars.

In total (across several divisions), Sony suffered at least 16 distinct instances of data loss or unintended access including an Excel file containing sweepstakes data from 2001 that Sony posted online. No compromise was needed for that particular failure — the file was readily available and indexed by Google. In the end, proprietary source code, administrator credentials, customer birthdays, credit card information, telephone numbers and home addresses were all exposed.

In regards to Sony’s breaches, the following question was posed, “If you were called by Sony right now, had 100% control over security, what would you do in the first 24-hours?” The traditional response is isolating breaches, identifying them, restoring service with the immediate attack vectors closed, and shoring up after that. However, from the outside Sony’s issue appears to be systemic. Their systems are varied, complicated, and numerous. Weaknesses appear to be everywhere. They were challenged in returning to a functioning state because even they were not compromised in an isolated way. Isolating and identifying breaches was far as one could get in those first 24 hours. Indeed, a central part of the division’s core revenue business was out of service for roughly 3 weeks.

The root issue behind everything is likely that Sony isn’t aware of their assets. Everything grew in place organically and they didn’t know what to protect. Sony claims it encrypted its credit card data, but researchers have found numbers related to the attack. Other identifying information wasn’t encrypted. Regardless of the circumstances related to the disclosure of credit card data, Sony failed protect other valuable information that can make it liable for fraud. Damage to Sony’s reputation and regulatory reaction, including Japan preventing restarting the service there at least through July, are additional issues.

The lack of awareness about what data is at risk can impact a business of any size. Much as different types of fire protection are needed to deal with an office environment, outdoor tire storage at an auto shop, a server room and a chemical factory, different types of security need to be applied to your data based on its exposure. Water won’t work on a grease fire, and encrypting a database has no value if a query can be run against it to retrieve all the information without encryption. While awareness is acute about credit card sensitivity, losing names, addresses, phone numbers and dates of birth can present just as much risk for fraud and civil or regulatory liability. This is discussed in ‘Data Categorisation – critical or not?’ and should be a key step in any organisation’s plans for resilience.